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We construct small-world spring networks based on a one-dimensional chain and study its static and qua-
sistatic behavior with respect to external forces. Regular bonds and shortcuts are assigned linear springs of
constant k and k�, respectively. In our models, shortcuts can only stand extensions less than �c beyond which
they are removed from the network. First we consider the simple cases of a hierarchical small-world network
and a complete network. In the main part of this paper we study random small-world networks �RSWN� in
which each pair of nodes is connected by a shortcut with probability p. We obtain a scaling relation for the
effective stiffness of RSWN when k=k�. In this case the extension distribution of shortcuts is scale free with
the exponent −2. There is a strong positive correlation between the extension of shortcuts and their between-
ness. We find that the chemical end-to-end distance �CEED� could change either abruptly or continuously with
respect to the external force. In the former case, the critical force is determined by the average number of
shortcuts emanating from a node. In the latter case, the distribution of changes in CEED obeys power laws of
the exponent −� with ��

3
2 .
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I. INTRODUCTION

Recent studies indicate that real networks have a complex
structure and function �1–5�. The small-world network
�SWN� introduced by Watts and Strogatz �3� captures some
basic ingredients of real networks. There are lots of studies
dealing with static properties of SWNs, see �2�, and refer-
ences therein. However, we still only know a little bit about
dynamical features of small-world networks �6–11�. To best
of our knowledge there is no study on the elastic properties
of SWNs. Certainly the most physical application of small-
world networks is in the context of macromolecules and
polymers �12–16�. The interaction pattern of a polymer can
be represented by a SWN. In this way, the monomers are
mapped into nodes of a network and the interaction between
two spatially close monomers is shown by a bond between
the corresponding nodes. Note that here there are two kinds
of bonds: regular and long range. The long range bonds, that
are usually weaker than the regular ones, could stand much
smaller stresses and would be broken more easily. If we
model the interactions with linear springs, we will obtain a
small-world spring network. Of course, we should take more
care on modeling linear polymers with SWNs �17�. Never-
theless, we expect that the study of small-world networks �as
a toy model of polymers when thermal activities are absent�
provides insights about more complicated behaviors of real
polymers.

Suppose that we have a chain of elastic fibers and add
some other fibers to randomly selected pairs of nodes. Then
it is interesting to know, for example, the effective stiffness
of this object and some other quantities which are of interest
in fiber-bundle models �18,19�. In this paper we are going to
study the behavior of small-world spring networks when ex-
ternal force F is exerted on the end nodes. The network

response contains some information about its internal struc-
ture. For a given F, we obtain the network stiffness and the
extension distribution of long range bonds �shortcuts�. Then
we increase F quasistatically and define a cutoff length for
shortcuts beyond which we remove them from the network.
During this quasistatic process the chemical end-to-end dis-
tance �CEED�, defined as the number of bonds in the shortest
path connecting node 1 to N, could have nontrivial behavior
with F. Moreover by increasing F one encounters a number
of avalanches in which one has a change in the number of
shortcuts and also in CEED. Certainly, distinct structures
could lead to different behaviors, for instance, in the distri-
bution of changes in CEED. These differences provide us a
useful measure to classify various networks.

Here we will show that the extension distribution is scale
free in the small-world regime in contrast to the three-modal
distribution of complete-network regime. We obtain a posi-
tive correlation between the betweenness �2� of a shortcut
and its extension. There is also a threshold value Fc which
leads to an abrupt change in CEED. The scaling of Fc with
the size of the network depends strongly on the network
structure. Depending on the elastic properties of springs we
could also have a continuous change in CEED.

The structure of this paper is as follows. After giving
some general definitions, we introduce and study a hierarchi-
cal small-world network in Sec. III. In Sec. IV we study
complete networks as another simple case. In Sec. V we
present the results of our numerical simulations and scaling
arguments for random small-world networks. Finally we give
the conclusion remarks.

II. GENERAL DEFINITIONS

We take a one-dimensional chain with N nodes, numbered
1 to N. This chain has N−1 regular bonds, with spring con-
stant k. The network structure is completed by adding some
shortcuts of spring constant k�. In the following we will con-
sider the case 0�k��k which is more reasonable in physical
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models. The effective elastic constant of the network is de-
noted by K. We exert force F on the end nodes of a chain and
obtain the extension distribution of shortcuts, P��x�, where
k��x is the force acting on a shortcut. On increasing F qua-
sistatically, we define a cutoff length �c for shortcuts. It
means that a shortcut is teared if its extension exceeds �c.
Here we will take �c=1 �the specific value of �c does not
affect the qualitative behavior of our results�. For a given
network, we may have a number of avalanches in some par-
ticular forces. An avalanche starts by the tearing of a shortcut
and ends when all the shortcuts have an extension smaller
than �c. By increasing F, a number of avalanches may occur
which we label by index a. In each avalanche, one can mea-
sure, for example, the force value Fa, the chemical end-to-
end distance Ra, and the effective spring constant of the net-
work Ka. The CEED, R, is defined as the number of bonds in
the shortest path connecting node 1 to N. Just after the ath
avalanche, the physical end-to-end distance Xa is given by
Fa /Ka. We also define the change in a quantity such as R by
�RaªRa+1−Ra.

III. A HIERARCHICAL SMALL-WORLD NETWORK

Let us first study a simple hierarchical small-world net-
work where its behavior can be treated exactly. The construc-
tion of the network is depicted in Fig. 1. In the first step
t=1 we consider two nodes connected with a regular bond.
In the next step t=2 we make a copy of the previous step and
merge them. We also add an additional shortcut between the
first and last nodes of the new network. If we repeat this
procedure for t steps we obtain a hierarchical SWN of size
N�t�=2t−1+1 with M�t�=2t−1−1 shortcuts. One can obtain
the following relation for the effective stiffness of the net-
work:

K�t� = k� +
K�t − 1�

2
=

k

N�t� − 1
+ 2k��1 −

1

N�t� − 1
� . �1�

If we pull the end nodes of the network with force F we find
that there are 2l shortcuts of the extension �x=F / �K�t�2l�.
Here l� �0, t−2� is an integer that labels the shortcuts ac-
cording to the steps that have been added to the network.
This in turn results in the following extension distribution:

P��x� � ��x�−2. �2�

Now we start to increase F from zero. In very small
F ,R0=1. When the force reaches to F1=K�t��c, the spring
connecting node 1 to N�t� extends by �c and tears. After
this event, R1=2 and the number of shortcuts decreases to
M1=M�t�−1. Moreover, the effective network stiffness is

given by K1=K�t−1� /2. It is easy to see that a shortcut con-
necting two far nodes has a larger extension than one con-
necting two near nodes. Thus we can summarize the behav-
ior of interesting quantities versus a

Fa = K�t − a + 1� ,

Ra = 2a,
�3�

Ma = M�t� + 1 − 2a,

Ka =
K�t − a�

2a .

The physical end-to-end distance then reads

Xa =
Fa

Ka
= Ra

K�t − a + 1�
K�t − a�

, �4�

which for t−a�1 is approximately equal to Ra. Thus, in this
limit the physical end-to-end distance is well given by
CEED. From the above relations we obtain Fa=Ka−1Ra−1.
Consider the bonds of the shortest path connecting node 1 to
N. Fa is the force at which the extensions of these bonds
become �c. Note that, however, the relation between force
and CEED is linear

FIG. 1. Constructing a hierarchical small-world network.

FIG. 2. Chemical end-to-end distance vs a for a complete net-
work of size N=1000 with k=1 and k�=0.

FIG. 3. g�y�=2K / �kpN� vs y= pN2 for networks of size
N=100, 500 �averaged over 1000 realizations� and N=1000 �aver-
aged over 300 realizations�. The line represents the curve 1+2/y.
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Fa =
kRa

2t + 2k��1 −
Ra

2t � . �5�

From Eqs. �3� one easily finds that

�Ra = − �Ma = 2a,
�6�

�Fa =
k

2t−a�1 −
2k�

k
� .

We see that for k��k /2 ,Fa increases versus a. Thus in this
situation we have a continues change in R. In the continuum
approximation we obtain

P��R� � ��R�−1. �7�

On the other hand, when k��k /2, from Eqs. �3� and �6� we
have F1=K�t� and F1�F2�F3… . It means that after tear-
ing the first shortcut, we reach a new configuration in which
the extension of most extended shortcut�s� is�are� greater
than �c. This process continues until all shortcuts tear. Note
that during this event which occurs at F=F1, CEED changes
from 1 to N−1. Thus we have an abrupt change of CEED at
Fc=K�t�.

IV. COMPLETE NETWORKS

In a complete network, each node is connected to all the
other nodes. Thus the number of shortcuts is M0= �N−1��N
−2� /2. We start with the simple case of k�=k with the effec-

FIG. 4. Extension distribution for RSWNs of size N=1000 and
k=k�=1 averaged over 5000 realizations. The line displays a power
law of exponent −2.

FIG. 5. P��R� for single realizations with different p when
k=k�=1,N=100. There are a few small changes in R followed by a
large change of order N happened at critical force Fc.

FIG. 6. Fc vs pN in RSWNs with k=k�=1 for N=50 and
N=100 averaged over 5000 and 1000 realizations, respectively. The
solid line displays Fc=kpN. In each step of the quasistatic process
we increase F by 0.1. The inset shows more clearly the linear be-
havior of Fc for large pN.

FIG. 7. The CEED vs F in RSWNs of size N=1000,k�=0 and
k=1 after 5000 �for p=0.1, 0.001� and 10000 �for p=0.0001�
realizations.

ELASTIC PROPERTIES OF SMALL-WORLD SPRING NETWORKS PHYSICAL REVIEW E 72, 066115 �2005�

066115-3



tive network stiffness of K0=kN /2. Moreover, P��x� consists
of three peaks corresponding to three different kinds of
shortcuts in the network: The first kind is a single shortcut
between the end nodes and has the largest extension. The
second kind of shortcuts which have less extensions, are
those that connect the end nodes to the inner nodes. And the
remaining shortcuts, with zero extensions, are the shortcuts
connecting the inner nodes to each other.

In the absence of external force, R0=1. For a given F
we have the largest extension in the bond connecting node 1
to N. Hence by increasing F the first avalanche occurs
at F1=kN /2. At this step we have M1=M0−1 ,R1=2,
and K1=k�N−2� /2. A simple calculation shows that
for all springs connected to nodes 1 and N, we have
�x=F / �k�N−2��. So by increasing F we reach F2=k�N−2�
in which 2�N−3� shortcuts are teared. In this step, we will
have a complete network consisted of all nodes between 2 to
N−1. But we know already that the spring connecting node 2
to N−1 can only stand forces lower than k�N−2� /2, which is
much smaller than F2. Thus, in the second avalanche, all
shortcuts will be removed. So Fc=k�N−2� is the threshold F
in which CEED has an abrupt change.

Next we consider the simple case of k�=0. It is clear that
in this situation, the shortcuts have no contribution in the
elastic properties of the network and we have a trivial prob-
lem in this respect. But in the process of increasing F, the

effect of shortcuts in quantities like CEED is still important
and nontrivial. It is not difficult to show that in this limit
P��x�	 �FN /k−�x�. Moreover, as a function of the number
of avalanches a, we have

Fa =
k

N − a
,

Ra = 1 + � N

N − a
	

+
,

�8�

Ma = M0 −
a�a + 1�

2
,

Ka =
k

N − 1
,

where �x�+ denotes the smallest integer larger than or equal
to x. In Fig. 2 we have shown R versus a. Here again the
relation between force and CEED is linear. If we take a and
Ra as continuous variables and use Eq. �8� we obtain

P��R� � ��R�−3/2. �9�

This behavior is also seen in mean field models of fiber
bundles for the size distribution of avalanches �18�.

FIG. 8. f�y�=R /N vs y= pLF
2 for RSWNs of different sizes

�averaged over 10 000 realizations�.

FIG. 9. P��R� for RSWNs of size N=1000,k�=0 and k=1. The
lines display P��R�	 ��R�−�. Number of realizations are the same
as those of Fig. 6.

FIG. 10. Extension distribution for RSWNs of size
N=1000,k=1, and k�=0.1 averaged over 5000 realizations.

FIG. 11. Correlation coefficient of �x and b for N=100 after
averaging over 5000 realizations.
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For 0�k��k , P��x� still consists of three delta peaks.
Numerical simulations show that only for k�
k the abrupt
change of CEED is replaced by a continuous one �more pre-
cisely a staircaselike behavior�. For example, if we choose
N=100 and k=1 we obtain a nearly continuous transition
only for k��0.01. We found that this value of k� is a de-
creasing function of network size. Thus for N→� a contin-
ues transition occurs only at k�=0.

V. RANDOM SMALL-WORLD NETWORKS

We take a one-dimensional chain of N nodes with N−1
regular bonds. Then with probability p, we connect any two
nodes of distance larger than 1 by a shortcut. In the follow-
ing, we consider three different cases �i� k=k�, �ii� k�=0, and
�iii� 0�k��k.

A. The case k=k�

For p�1/N we expect to have K=kpN /2 which in the
limit of p=1 is equal to the stiffness of a complete network.
In other word if p�1/N, we have effectively a complete
network in which k has been replaced with kp. On the other
hand for p=0 and large N we have K=k /N. Using these
limiting cases we suggest that

K

N
=

kp

2
g�pN2� ,

g�y� � 
1, y � 1
2
y , y → 0

� . �10�

Note that for large N , pN2 /2 is equal to the average number
of shortcuts. Numerical simulations shown in Fig. 3 support
this scaling relation.

As p decreases, we observe a crossover in P��x� from a
three-modal behavior to a scale free one, see Fig. 4. When
p�1/N this distribution has three broad maximums instead
of three peaks in a complete network. The broadening of
these peaks is due to the random structure of the SWN. Just
in the small-world regime, P��x� is given by a power law
distribution of power −2. In this respect the RSWN belongs
to the universality class of the hierarchical model introduced
in Sec. III.

FIG. 12. P��R� for a network with N=1000, p=0.001, and
k=1. The data are results of averaging over 10 000 �k�=0� and
5000 �k�=0.1, 0.2� realizations. The lines represent power laws of
exponent −1 and − 3

2 .

FIG. 13. Fmax vs k� for N=100 and k=1 �averaged over 1000
realizations�. The inset shows more clearly the linear behavior of
data for large k�. The lines display linear functions Fmax=a0+a1k�.

FIG. 14. Schematic representation of phase diagram. Dashed
region indicates where we have a continuous behavior of R vs F.
For p�1/N2 �black region� we cannot speak of continuous or dis-
continuous behavior of R. Note that as N approaches to infinity the
continuous region reduces to the line k�=0. The inset shows the
variation of � with p when N=1000,k=1, and k�=0. The errors in
� are of order 0.01. The same behavior will be observed for � when
we fix p and increase k�. The solid line in the inset indicates the
expected value of � for large p, i.e., 3

2 .
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In our quasistatic process of increasing F, CEED changes
nearly abruptly at Fc. This behavior has been shown in Fig. 5
that displays P��R� for single realizations of the process. We
observe that after a few events of small size, we have a large
change of order N in R which we interpret it as a discontinu-
ous behavior of CEED. Again for p�1/N ,Fc=kp�N−2�, see
Fig. 6. For p→0, when there is at least one shortcut in the
network, Fc�k�c. These limiting behaviors of Fc with p
have been shown in Fig. 6. We find that average number of
shortcuts emanating from a node, pN, determines Fc. As far
as the shortcuts do not overlap with each other, Fc does not
depend on their number. Actually for a finite number of
shortcuts, a typical configuration has almost nonoverlapping
shortcuts. In this situation we have Fc�k�c. Thus, we expect
that Fc changes considerably only when pN�1. Moreover,
from the linear feature of the system we also expect that Fc
should be proportional to �c and k. Thus we suggest
Fc=k�ch�pN�, where h�pN� is a dimensionless scaling func-
tion. In Fig. 6 we show that this relation works well for two
small-size networks and within our numerical errors.

B. The case k�=0

When k�=0 the shortcuts have no contribution in the elas-
tic properties of the network. As indicated in the study of
complete networks, P��x� is a linear decreasing function.
But notice that during the quasistatic process, tearing of
shortcuts leads to considerable variations in R. In Fig. 7 we
show variation of R versus F obtained by numerical simula-
tions. There is no linear relation between R and F. Indeed for
a given F, all shortcuts connecting two nodes of distances
larger than LF=k /F have been already teared. This intro-
duces another length scale. We expect R to be a function of
the number of shortcuts in a subnetwork of size LF, that is,

R

N
= f�pLF

2� . �11�

Numerical simulations presented in Fig. 8 confirm this scal-
ing relation.

Figure 9 displays P��R� for various values of p. For a
small value of p=0.1, P��R�	 ��R�−3/2 like a complete net-
work. For smaller p, we find a power law distribution of
lower exponent. For a very small p , P��R� is nearly a con-
stant function with an exponential tail.

C. The case 0�k��k

As before we take k=1 and decrease k� from one. Nu-
merical simulations show that in this case the network stiff-

ness is proportional to k�. The effects of k� and p on elastic
properties are the same. It means that with respect to elastic
properties, the decreasing of k� at a fixed p is equivalent to
the decreasing of p at a fixed k�. In Fig. 10 we display the
extension distribution when k�=0.1. It is observed that when
p�1/N we have a multimodal distribution in contrast to the
three-modal distribution of case k=k� for the same value of
p. Recall that we did not have such a behavior for lower
values of p when k=k�. Indeed this new multimodal behavior
is observed only when we have a large number of shortcuts.

The extension distribution of RSWNs shows that there are
some shortcuts bearing very large forces compared with the
other ones. Certainly this is because of their essential roles in
the network structure. A good measure of centrality of bonds
in a network is their betweenness �2�. Suppose that we have
n shortest paths connecting node 1 to N. A given shortcut
may contribute in ns of these paths. Then, the betweenness of
this shortcut is defined as b=ns /n. We define

rb,�x
ª

b�x� − b��x�
��b��x

, �12�

as a measure of correlation between extension and between-
ness of shortcuts. In this definition ��x

and �b are variances
of �x and b, respectively. In Fig. 11 we show how the cor-
relation coefficient depends on k� and p. As expected, rb,�x
has a considerable positive value in the small-world regime.
The correlation coefficient is nearly independent of k� except
for a rapid decrease to zero for k�→0.

In the quasistatic process, as it happens in complete
networks, a considerable number of avalanches takes place
only for a significantly small k�. Indeed, the larger p the
lower value of k�; we need to see a continuous behavior of R.
In Fig. 12 we compare P��R� for two cases of k�=0 and
k�=0.1. The figure shows that, as expected, by increasing
k� , P��R� approaches to that of a complete network. Indeed,
in the small-world regime and for a nonzero k� , P��R� obeys
a power law of exponent −� with ��

3
2 . This exponent ap-

proaches to − 3
2 as we increase k� or p.

In this case it is not easy to define kc��p�, the value which
separates continuous and discontinuous regimes. Instead we
calculate Fmax, the force which leads to Rmax=N−1. We ex-
pect that a change in the behavior of Fmax with respect to k�
signals a crossover from a continuous to a discontinuous
region. In Fig. 13 we show the variation of Fmax versus k�
obtained by numerical simulation. We see that by decreasing
k�, the linear behavior of Fmax changes and then it saturates

TABLE I. Summary of results for P��x� and P��R� in different cases. Here kc��p� gives the line in the
�p ,k�� plane that separates continuous and discontinues behavior of CEED.

P��x� P��R�

k=k� ��x�−2 ��R,N �an abrupt change of R�
k�=0 a0−a1�x ��R�−����3/2�

0�k��k ��x�−��2�+ oscillations �for large p�
��R�−����3/2� ,k��kc��p�

��R,N , k��kc��p�
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for k�→0. This crossover occurs for a lower k� as one en-
hances the number of shortcuts.

VI. CONCLUSIONS

We studied the static and quasistatic properties of SWNs.
We observed that the network’s structure significantly affects
the static and quasistatic behavior. Thus, we could draw
some conclusions about the structure of networks through
the study of these properties.

The summary of the main results for RSWNs have been
represented in Table I and Fig. 14. We found that for very
small values of p, the effective stiffness of the network is
comparable with that of a complete network. When k=k� the
extension distribution of shortcuts is a power law of expo-
nent −2. In this respect RSWNs behave like a hierarchical
network introduced in this paper. There was also a strong
positive correlation between the betweenness of a shortcut

and its extension. It means that just by looking at the distri-
bution of extensions in a network, one could be able to dis-
tinguish which shortcuts are more central.

In the quasistatic part, we showed that by increasing F,
CEED could have a continuous or discontinuous transition.
In general, to have a continuous transition we need a much
smaller spring constant for shortcuts rather than regular
bonds. In the case of a discontinuous transition, the critical
force is determined by the average number of shortcuts per
node. It was found that for a continuous transition, P��R� is
given by power law distributions of the exponent −� with
��

3
2 .
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